
Original Manuscript

Type I Error Is Inflated in the Two-Phase
Reverse Correlation Procedure
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Abstract

Mental images of social categories are highly consequential: They can reveal biases and help elucidate the factors that contribute to
those biases. One strategy frequently used to evaluate the properties of mental images is reverse correlation, which is a data-driven
method that allows researchers to visualize a person’s mental representation of individuals or groups. In social psychology, this
technique often employs a unique two-phase structure. This approach, however, has not yet been carefully validated, and its structure
may alter thepropertiesof the statistical tests used to evaluatedifferences betweenconditions.Using computer simulations toevaluate
the Type I error rate in a typical two-phase reverse correlation procedure, we find that it is inflated in a nontrivial set of circumstances.
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Take a moment to conjure a mental image of a college profes-

sor. Is the person you called to mind young or old? Trustworthy

or untrustworthy? Male or female? Mental representations of

social categories such as this one are highly consequential:

They can reveal biases and help elucidate the factors that con-

tribute to them. At the same time, however, mental representa-

tions are difficult to study: They are complex, rich in detail, and

their properties may not be readily available to conscious intro-

spection or (honest) self-reporting. Indeed, some have sug-

gested that mental representations are, in some ways,

“ineffable” (Mangini & Biederman, 2004).

An influential technique for studying visual representations is

called reverse correlation. This data-driven approach allows

researchers to create a visualization of a person’s mental represen-

tation (Brinkman et al., 2017; Mangini & Biederman, 2004) and, as

a result, it has rapidly proliferated (for a review, see Brinkman et al.,

2017, which cites over 25 papers that have used the procedure).

However, despite its many advantages, there may be methodologi-

cal issues with the procedure, at least as it is commonly employed

in social psychology, as a result of its unique design employing two

independent phases (described in more detail below). Here, we

investigate whether the structure of a two-phase reverse correlation

procedure may influence Type I error rates.

A Typical Two-Phase Reverse
Correlation Paradigm

The procedure begins with an image (i.e., base face) onto

which noise patterns are added that randomly distort its charac-

teristics (Figure 1; see also Brinkman et al., 2017). On each trial

of the image generation phase (Phase I), participants see pairs

of images and their task is to select which of the two images

more closely resembles their mental representation (e.g.,

“Which face looks more like a college professor?”). By making

these judgments over many trials, participants are, in essence,

providing information about the features of the images that cor-

relate with their mental representation.

Selected noise patterns can be averaged together and overlaid

on top of the base face to create a composite. Composites can be

created both for individual participants (individual CIs) or, more

commonly, for all participants in a condition (group CIs). Next,

researchers conduct an image rating phase (Phase II) in which a

separate group of raters judges the group composites (group CIs)

on a target dimension of interest. Finally, a statistical test

assesses differences in these subjective ratings (Figure 2).

Why Might Reverse Correlation Inflate Type
I Error?

Unique to this procedure, group CIs created by one sample are

evaluated independently by an entirely new sample in a
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separate image rating phase with its own methodology and

design characteristics. Whatever variation existed in partici-

pants’ responses in Phase I that created the group CIs is lost and

supplanted by the variation in raters’ perceptions of each group

CI. In essence, the only information preserved from Phase I is

the mean, but the standard deviation (SD) around the mean is

lost in the transition to Phase II.

To see why this is problematic, imagine a hypothetical

reverse correlation experiment in which we attempt to discover

whether graduate (vs. undergraduate) students visualize college

professors as warmer/friendlier. Unfortunately, however, we

were only able to obtain two undergraduate and two graduate

students to complete the reverse correlation procedure. (This

is admittedly an extreme example for illustrative purposes,

though to be clear, our simulations will explore experimental

parameters more typical of actual reverse correlation experi-

ments.) We then construct group-level composites for each of

the two conditions. Because the sample size is so small, it is not

difficult to imagine that some differences will emerge in the

appearance of these group CIs even if there is no true difference

in the two groups—perhaps even quite large differences. In a

typical experiment, these differences would be considered in

light of the standard error that emerges in each condition—that

is, the sample size and variability that exists among the two

participants in each cell.

However, when we move to the image rating phase of a

reverse correlation experiment, the sample size and variance

that would normally be factored into the t test are lost and sup-

planted by the properties of the second phase of the experi-

ment—that is, the number of raters and the variance in their

perceptions of the group CIs. To take an extreme example, sup-

pose that we decide to recruit 100,000 raters for each group CI

(although again, to be clear, in our simulations we explore para-

meters more typical of actual experiments). Due to the large

sample size, the standard error will be exceedingly small, and

even very small differences in the ratings of the group CIs will

be statistically significant. This could easily lead us to erro-

neously conclude that we have found evidence in favor of our

hypothesis, even though the differences that emerged in Phase I

could be entirely due to random chance based on the observa-

tions of an exceedingly small number of participants. This is

the first problem with a two-phase procedure and it is explained

in more detail in Figure 3 (top).

There is also a second problem with the structure of the pro-

cedure. When moving from Phase I to Phase II, an additional

source of variation is introduced into the estimate of the effect

size. In the first phase of the experiment, there is variance due

to sampling error; if we were to repeat the first phase of the

experiment, we would not expect to obtain identical group CIs

every time. Instead, there is natural variation that will cause the

group CIs to sometimes exhibit smaller differences and some-

times larger ones. The extent of this variation is captured by the

sampling distribution in Phase I. Again, a typical independent-

samples t test accounts for this variance by assessing whether

the differences observed exceed those expected simply due to

chance. In the reverse correlation procedure, however, these

group CIs (that already exhibit natural variation) are then

passed to the second group of raters who judge them on the trait

of interest. However, these raters will also exhibit variance in

their ratings of the group CIs. Even if we were to use identical

group CIs in repeated runs of the experiment, we would

Figure 2. A two-image forced-choice reverse correlation procedure.

Figure 1. A base face (left) is superimposed with noise patterns that
randomly distort its characteristics (right). Participants make judg-
ments about which of the two randomly distorted images more
closely resembles their mental image of a social category.
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observe different ratings on these group CIs with each run, as

specified by the sampling distribution in Phase II. Importantly,

this variation in the ratings is occurring independently of the

variation in the group CIs that occurred in Phase I. This means

that even if there are no true differences between conditions in

Phase I, the random variation that occurred (again, as captured

by the sampling distribution in Phase I) would mean that the

group CIs are not identical when Phase II begins. The raters

then exhibit additional variation in their ratings of these ran-

domly varying group CIs. In sum, when combining the two

phases of the experiment, under repeated testing, there are two

factors that are independently varying: There is the variation

that is occurring in the group CIs themselves under repeated

testing, which causes them to exhibit different mean differ-

ences on each run of the experiment, and there is the variation

that is occurring in the ratings task, which causes ratings to

exhibit different mean differences on each run of the

experiment.

This can also inflate Type I error. To see why, imagine, for

example, that random variation happens to cause the group CIs

to exhibit large differences but that these differences are not

statistically significant when considered in light of the natural

variation in Phase I. Nonetheless, in Phase II, if it happens that

the ratings task also exhibits larger than average differences in

the ratings, this increase could cause the t test to become statis-

tically significant, even though it would not have been in Phase

I. Indeed, the variance sum law specifies the exact variance of

the combined distributions from both phases of the experi-

ment—specifically, the two sources of variation are additive

and, when combined, they ultimately widen the sampling

Figure 3. A summary of two reasons why a two-phase reverse correlation procedure could inflate Type I error. The first problem (top) is that
the standard error in the image generation phase is substituted for the standard error of raters’ perceptions of the group CIs. This will result in
Type I error inflation to the extent that the standard error in Phase II is smaller than the standard error in Phase I. The second problem (bottom)
is that, under repeated testing, the introduction of a second phase of the experiment adds additional sampling error into estimates of the effect
size. There is error in both the first phase in the generation of the group CIs, and there is error in the rating of each pair of group CIs produced in
Phase I. These two sources of variability are additive and make overestimation of the effect size occur with greater frequency.
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distribution of the differences of means in Phase II. The out-

come is that extreme mean differences (i.e., overestimates of

the effect size in the numerator of the t test in the ratings task)

become more likely and make statistically significant results

occur with greater frequency even under the null hypothesis.

This is analogous to the process that occurs in an

independent-samples t test in which the sampling distribution

of the differences of means has variance equal to the sum of the

variances of the sampling distributions for each condition—

that is, var(M1 � M2) ¼ var(M1) þ var(M2). In a standard

independent-samples t test, the mean of the sampling distribu-

tion of the differences of means is zero. However, the variance

of the sampling distribution of the differences of means is much

greater than that of a single-sample t test because of the var-

iance sum law.

Importantly, this can occur despite the fact that, in the long

run, the effect size estimate under the null hypothesis is zero

(i.e., it is an unbiased estimator of effect size). In a two-

phase reverse correlation procedure, under repeated testing, the

effect size estimate in Phase II will randomly underestimate the

effect size as often as it randomly overestimates it; these differ-

ences will cancel one another out in the long run. However,

because there is increased variance in the estimate of the effect

size (the numerator of the t test), more extreme differences

become more likely to occur, just by chance, in the long run.

This additional variance in the effect size estimate is not fac-

tored into the t test conducted in Phase II, which means that

it will be too sensitive to differences that emerge in the ratings

in Phase II—ratings that include both the variation in phase I

and the variation in Phase II. This is the second problem with

a two-phase procedure and it is explained in more detail in Fig-

ure 3 (bottom).

The more general observation is that assuming a two-tailed

independent-samples t test with a ¼ .05, the statistical signifi-

cance of the test is determined by two factors: (a) the effect size

(i.e., the numerator of the t test) and (b) the standard error (i.e.,

the denominator of the t test). If, when moving from Phase I to

Phase II of the experiment, both of these factors remain

unchanged, then false positives ought to be successfully con-

trolled. However, it is unclear whether either is preserved in

practice: (a) the standard error between phases could be quite

different depending on the sample size and natural variation

that exists in each phase and (b) the estimate of the effect size

between phases could be overestimated (in the long run) due to

increased variability introduced as a result of resampling.

The Current Research

These observations motivated us to test Type I error inflation in

the reverse correlation procedure. We conducted computer

simulations that manipulated the sample size as well as the

ratio of the SD of each phase of a simulated reverse correlation

paradigm in which the null hypothesis was true (i.e., there were

no systematic differences between conditions). We would

expect p < .05 to occur at a nominal rate of a ¼ .05. However,

over repeated iterations of this two-phase procedure, we can

directly observe the probability of obtaining a statistically sig-

nificant result. We predicted that the relationship between the

standard errors of each phase would have a systematic relation-

ship with Type I error rates.

Method

The computer simulations were conducted using the following

six steps. The code and output for all of our simulations are

available here: (https://osf.io/bvtzg/).

Generate a Set of Stimuli Using rcicr

We generated a set of stimuli using the rcicr package (Dotsch,

2016) using a neutral base image (a solid gray square). Typi-

cally, the base image used in actual research has a resolution

of 128 � 128, 256 � 256, or 512 � 512. In our initial simula-

tion, we used a resolution of 16 � 16 to keep computations

manageable.

Create a Set of Phase I Participants

We simulated the image generation phase by randomly assign-

ing N participants to two conditions of a simulated experiment.

For each participant, we generated a set of random choices

among each pair of images on each trial (N ¼ 300).

Create Individual CIs

The randomly selected images for each participant were aver-

aged using the standard reverse correlation procedure. The out-

put is a two-dimensional square matrix for each participant.

Create a Group CI

The choices for all participants in each condition were aver-

aged together to create group composites for each condition.

The group CI can be thought of as a measure of central ten-

dency (i.e., the “mean” of each condition).

Generate a Set of Phase II Ratings

In Phase II of an actual reverse correlation procedure, raters

provide subjective assessments of the group CIs on a dimension

of interest, such as whether a face appears masculine or femi-

nine. We simulated these judgments by creating normal distri-

butions that had means equal to the average brightness for each

group CI and SDs set to a fixed value that varied in relation to

the Phase I SD (across all iterations: M¼ 0, SD¼ 0.0586). This

was determined by taking the average brightness of each of the

individual CIs in each condition in Phase I and calculating the

pooled SD of these values, just as we would if we were calcu-

lating an independent-samples t test on the individual CIs.

Then, we multiplied this value by a multiplier to systematically

vary the ratio of the SDs between phases, with values ranging

from 0.001 to 10. For example, if the pooled SD in the image

generation phase was equal to 5 and the multiplier was set to
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0.5, then we would set the Phase II SD for both conditions to be

SD ¼ 2.5. Values of less than 1 for this multiplier indicate that

the Phase II SD is smaller than Phase I, values greater than 1

indicate the opposite, and a value of 1 indicates that they are

identical.

The outcome of the simulated Phase II is a set of N ratings

drawn from two normal distributions (N/2 ratings each) with

means equal to the values obtained on the group CIs and SDs

that were systematically varied in relation to the Phase I SD.

Conduct a t Test on Simulated Ratings

Finally, we conducted an independent-samples t test to test for

differences in the simulated image rating distributions. Because

there are no true differences between the groups in our simula-

tion, any significant differences are due to chance alone.

Steps 2–6 of this procedure were executed 10,000 times for

each permutation of the simulation to give us a measure of the

long-run probability of a false positive under each combination

of manipulated variables. Our primary measure was the propor-

tion of significant t tests that emerged over these 10,000

iterations.

Results

How Does the SD in Phase II (Relative to Phase I)
Influence False Positives?

In our initial simulation, we fixed sample size in both phases to

be N ¼ 100 (50 per condition) and executed the simulation for

different values of the SD multiplier (Figure 4). As the SD in

Phase II becomes smaller in magnitude relative to Phase I SD

(i.e., moving right to left in the figure), the likelihood of a false

positive exponentially increases. These data were well fit by a

three-parameter exponential decay function (r2 ¼ .9993).

A notable aspect of these results is that there is still inflation

of Type I error beyond the theoretical value of a ¼ .05, even

when the SDs between phases are identical (i.e., SD ratio ¼
1). This is because, although the standard errors are identical

between phases (i.e., the denominator of the t test; Figure

3A), there is still additional error in the estimate of the effect

size (i.e., mean differences in the numerator of the t test; Figure

3B). Indeed, due to this additional error, it isn’t until the Phase

II SD is 5 times larger than the Phase I SD that the rate of false

positives approaches the theoretical value of a ¼ .05.

How Does Sample Size Affect the Likelihood of a False
Positive?

Our initial simulations held sample size constant to isolate the

effects of relative differences in the SDs between phases. How-

ever, more important than the SD is the standard error in each

phase of the experiment, which is simultaneously impacted by

both the SD and the sample size. Thus, in the next set of simu-

lations, we systematically manipulated both of these factors.

First, we held Phase II sample size constant at N¼ 100 and var-

ied Phase I sample size. Next, we did the reverse. (All sample

size combinations for both phases are documented in Supple-

mental Material [SM].)

Phase I sample size. As the sample size in Phase I increases, the

standard error decreases. Thus, mean differences between the

group CIs in Phase I should also decrease, making it less likely

that statistically significant differences will be detected in

Phase II. This was confirmed by the simulation (Figure 5),

which shows that as the sample size gets larger in Phase I, the

likelihood of a false positive decreases (i.e., less area under the

curve). However, even with a very large sample size in Phase I

(N ¼ 500), there is still inflation of false positives for many

plausible values of the Phase II SD (including, as above, when

Phase I and II have identical SDs). For example, if Phase I N ¼
500 and Phase II N ¼ 100, the observed rate of false positives

when the SDs are identical is still somewhat inflated at 0.075.

Phase II sample size. As the sample size in Phase II increases, the

standard error decreases. Thus, smaller mean differences in

Phase I will become statistically significant, increasing the

likelihood of a false positive. Confirming this prediction, the

simulations show that as the sample size in Phase II increases,

the likelihood of a false positive increases (i.e., more area under

the curve; Figure 6). However, even when Phase II sample size

is relatively small (N ¼ 30), there is still inflation of false posi-

tives for many plausible values of Phase II SDs. For example, if

Phase I N¼ 100 and Phase II N¼ 30, the observed rate of false

positives when the SDs are identical is still somewhat inflated

at 0.081.

Figure 4. The false positive rate as a function of the relationship
between the standard deviation (SD) in each phase of a simulated two-
image forced-choice reverse correlation procedure. The sample size
in both phases of the experiment for this iteration of the simulation
was fixed to N ¼ 100 (50 per cell). Each data point is the observed
false positive rate across 10,000 simulated runs of the procedure. SD
ratio values less than 1 indicate that Phase I has a larger SD than Phase
II; values greater than 1 indicate that Phase I has a smaller SD than
Phase II.
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How Does the Relative Magnitude of the Standard
Error in Each Phase Impact False Positives?

These effects occur because standard errors are impacted by

both the SD of the distributions and the sample sizes in each

phase. However, if we reanalyze the data with a focus on the

ratio of the standard errors between phases, we can assess the

likelihood of a false positive using a method that is invariant

to sample size. To accomplish this, we reanalyzed all of the

permutations of the sample size manipulation simulations

reported above (N ¼ 30, 50, 100, 250, and 500 for each phase

across 13 SD multiplier values). For each iteration of the

simulation, we calculated the observed ratio of standard errors

between phases. Then, we calculated the average of these val-

ues across the 10,000 iterations for each permutation (N ¼
325) and plotted them against the observed rate of false posi-

tives (Figure 7).

The data are, once again, well fit by a three-parameter expo-

nential decay function (r2 ¼ .9978). These results suggest that,

independent of the relative sample sizes in each phase of the

experiment, Type I error is not sufficiently controlled until the

standard error in Phase II is at least 3 times the size of the stan-

dard error in Phase I.

Are These Results Robust to Changes in the
Properties of the Procedure?

Finally, we sought to assess the robustness of these results to

the manipulation of several aspects of the simulated proce-

dure: (1) Phase II subjective rating measure, (2) number of

Phase I trials, and (3) image resolution. These robustness

checks show that the exponential curve we document in our

initial simulation is robust to the manipulation of all of these

factors, indicating that the patterns we observe are due to the

general structure of the reverse correlation procedure rather

than the specifics of how the task is carried out (see SM for

more details).

Do Individual CIs Show a Similar Inflation of False
Positives?

Another strategy used in the reverse correlation procedure is to

rate the individual CIs on a subjective dimension of interest and

Figure 5. False positives as a function of manipulation of the Phase I
sample size. Phase II sample size is held constant at N ¼ 100 (50 per
cell). As Phase I sample size increases, the likelihood of a false positive
decreases, and smaller values of Phase II standard deviations are
necessary for inflation to occur. Each observation is based on 10,000
iterations of the simulation.

Figure 6. False positives as a function of manipulation of the Phase II
sample size. As Phase II sample size increases, the likelihood of a false
positive increases. Each observation is based on 10,000 iterations of
the simulation.

Figure 7. The observed relationship between the ratio of the stan-
dard errors between phases of the experiment and the observed
likelihood of committing a Type I error. Each data point represents the
observed ratio of standard errors (with values greater than 1 indi-
cating that Phase I is larger than Phase II and values less than 1 indi-
cating the reverse) and observed false positives over 10,000 iterations.
The solid line depicts the predicted rate of false positives based on an
exponential decay function (r2 ¼ .9978).
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to conduct a t test on these ratings (e.g., Dotsch et al., 2008;

Young et al., 2013). This has the potential to avoid some of the

pitfalls of group CIs in that the variance in the individual CIs in

Phase I is preserved. Whereas for group CIs, the standard error

in Phase II is determined by the number of raters and the var-

iance in their perceptions of the group CIs, for individual CIs,

the standard error is determined by the number of individual

CIs and the amount of variability in the ratings of the compo-

sites themselves—that is, the individual CI approach retains the

extent to which different individual CIs generate different rat-

ings across all raters, rather than the extent to which people

agree or disagree about the ratings of a single composite. Thus,

the variance that occurs in people’s mental representations

among the participants in the image generation phase is pre-

served and presented to image raters in Phase II (Figure 8).

Are these methodological differences enough to control false

positives? To test this, we conducted a variation of the simula-

tion in which we modified Phase II to simulate a set of N raters

who provided ratings for each of the individual CIs in Phase I.

We used three possible values of the SD multiplier: 0.01, 1, and

10; however, because this manipulation had no effect on the rate

of false positives, we report the average proportion of false posi-

tives collapsing across this variable. We used the mean rating

over all raters as the measure for each individual CI. The values

for all individual CIs in each condition were then submitted to an

independent-samples t test (Table 1). In no circumstances was

there an inflation of false positives beyond the theoretical value

of a¼ .05. Thus, false positives are successfully controlled when

using individual CIs.

General Discussion

Despite the many advantages of the reverse correlation proce-

dure to the study of mental representations, our findings sug-

gest that when using group CIs, there is a nontrivial set of

circumstances in which Type I error is inflated beyond conven-

tionally acceptable levels. However, Type I error is controlled

when using individual CIs. Overall, our results suggest that for

group CIs, the rate of false positives is a function of the rela-

tionship between the standard errors of each phase. Factors that

decrease the standard error in Phase I (i.e., increases in Phase I

sample size or decreases in Phase I SD) serve to increase the

size of the ratio of the SDs and make false positives less likely.

On the other hand, factors that increase the standard error in

Phase II (i.e., increases in Phase II sample size or decreases

in Phase II SD) serve to reduce the size of the ratio and make

false positives less likely.

Figure 8. If the individual CIs are rated rather than the group CIs, the variance in Phase I is no longer lost and supplanted in Phase II.

Table 1. False Positives as a Function of Sample Size in Both Phases of
the Experiment When Conducting Statistical Tests on Individual CIs
Rather Than Group CIs.

Phase I sample
size

Phase II Sample Size

30 50 100 250 500

30 .048 .049 .050 .050 .051
50 .047 .047 .047 .048 .050

100 .048 .051 .049 .050 .052
250 .050 .052 .050 .049 .048
500 .050 .053 .050 .049 .050

Cone et al. 7



Assessing the Reliability of the Current Literature

The results of our simulations indicate that the published liter-

ature using reverse correlation procedures may be unreliable. Is

there any way to evaluate the extent to which published find-

ings may be unreplicable? Unfortunately, this is a difficult

question to answer for at least three reasons. First, the Type I

error rate was not inflated under every permutation of the simu-

lations that we conducted. Second, determining the exact like-

lihood of a significant effect due to chance alone requires

information about the sample sizes and SDs in both phases of

the experiment—but in practice, we only know this informa-

tion for Phase II. Third, and perhaps most importantly, even

if the Type I error rate is theoretically inflated under certain

permutations of the procedure, this merely indicates that the

statistical significance of the test conducted on image ratings

is inaccurate. Our simulations cannot shed light on whether

or not a particular finding is “real” in the population.

These caveats aside, one strategy for assessing the potential

magnitude of the problem is to explore the easily observable prop-

erties of past research—namely, sample size—to place some

upper and lower bounds on the potential for Type I error inflation.

The results of the simulation suggest that Type I error is especially

likely to occur if the sample size in Phase II is larger than or equal

to the sample size in Phase I (see SM for charts of all sample size

combinations). When this is the case, the Phase II SD must be at

least 2–3 times larger than Phase I in order for Type I error to be

successfully controlled—an outcome that is unlikely to occur in

actual rating tasks. However, a brief literature review (N ¼ 28

studies reported in 24 published papers) suggested that 66% of

past uses of reverse correlation had designs that had larger or

equivalent sample sizes in Phase II relative to Phase I, meaning

that a desirable ratio of the standard errors has likely not been con-

sistently achieved in past published work.

What Can Be Done?

Our simulations suggest that the use of group CIs in a two-

phase procedure is problematic. Can the procedure be modified

to ensure adequate Type I error control? We propose three pro-

mising solutions.

Individual CIs. Our simulations suggest that there were no sce-

narios in which individual CIs caused inflation of Type I error.

They are thus still a viable strategy for assessing condition

effects in a reverse correlation procedure. However, two prop-

erties of individual CIs make them a less desirable or feasible

option. First, their usage requires that dozens or perhaps hun-

dreds of composites are rated, which can be practically infeasi-

ble. This places practical limits on the sample size of Phase I

with important implications for the statistical power that can

be achieved. Second, individual CIs are composed of many

fewer individual forced-choice decisions. Whereas group CIs

might be composed of thousands of judgments, individual CIs

are generally composed of 300–1,000, thus having an undesir-

able influence on the signal-to-noise ratio. These two

limitations are part of the reason why group CIs have prolifer-

ated so widely in the literature, and they suggest that it could be

profitable to develop new techniques for reliably assessing dif-

ferences in group CIs.

An objective metric. More objective comparisons of group CIs

could reveal whether they exhibit sufficient differences that

exceed what we should expect to occur by chance. Recently,

Brinkman and colleagues (2020) proposed a promising tech-

nique for evaluating the informational value of a single compo-

site. The logic of this test is very similar to a single-sample t

test in which an observation is compared against a reference

distribution to assess its likelihood of occurrence solely

through the operation of a random process. This is accom-

plished by taking the composite—a square matrix of real num-

bers—and calculating a metric on this matrix called its norm.

This observed value is then compared against a reference dis-

tribution in which composites are generated using a random

process and the norm of each matrix is calculated. They find

that this metric—which they call infoVal—can successfully

distinguish between composites that are the products of sys-

tematic versus random responding. Theoretically, the logic of

this test can be adapted to allow for a comparison of differences

in the matrix norms between two group composites. This is a

method that we are currently developing and testing.

A hybrid approach: Subgroup CIs. Calculating objective differ-

ences on group CIs is a useful strategy for assessing whether

any true differences emerge between them, but ultimately, they

cannot allow for tests of more specific hypotheses that predict

the various ways in which the composites will differ on a sub-

jective measure of interest such as trustworthiness or masculi-

nity. Thus, there is value in developing an approach that

preserves the subjective ratings phase of the experiment to test

for more specific differences between them but that modifies

the procedure in ways that prevent Type I error inflation. One

possibility is to use subgroup CIs that are composed of the

judgments of random subsets of multiple participants in each

condition. Such an approach would have the benefit of preser-

ving (some of) the variability in participants’ visual representa-

tions from the first phase of the experiment (and thus

potentially controling Type I error rates), while simultaneously

(a) reducing the total number of images that must be rated and

(b) increasing the total number of forced-choice decisions con-

tributing to each subgroup CI. We have conducted an initial test

of this approach and find that it does not inflate Type I error

(Lei, Brown-Iannuzzi, Cone, & Dotsch, 2020).

Conclusion

These results indicate that Type I error is not sufficiently

controlled in a typical two-phase reverse correlation proce-

dure. Given these results, we suggest that researchers

should not use group CIs as their sole strategy for asses-

sing the effects of manipulation in a reverse correlation

paradigm. Still, we should emphasize that Type I error
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inflation is not inevitable. Individual CIs can still be used

to test hypotheses until other methods for evaluating differ-

ences can be fully developed and validated. With an

awareness of these pitfalls and the development of new

strategies for assessing condition effects, reverse correla-

tion still holds promise as a powerful technique for visua-

lizing mental representations and making the “ineffable”

amenable to empirical investigation.
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